원리 (Principle)
물의 낙차에너지를 사용하는 발전 방법은 대개 2가지가 있는데, 하나는 물에 대전된 전하를 특정 방향으로 집진하여 전기를 생산하는 것이고, 다른 하나는 떨어지는 물의 운동 에너지를 사용해 수차를 돌려 발전기를 구동하는 식이다.
[유형]
수력발전은 물의 낙차를 이용하는 것이므로 수력발전을 하려면 반드시 물이 내려가는 경사를 급하게 만들어야 한다. 그래서 아래와 같은 유형이 고안되었다.
댐식
가장 기초적인 형태. 하천의 경사가 큰 구간에 댐을 설치하고 가둔 물을 떨어트려 그 낙차로 터빈을 돌린다.
수로식
감입곡류하천에서 쓸 수 있는 유형. 댐을 설치하고 그 지점보다 아래의 특정 지점까지 수로를 직선으로 이으면, 곡선으로 돌아가는 원래 하천보다 낙차가 더 증가하는데, 그 낙차로 터빈을 돌린다.
터널 및 유역변경식
경동지형에서 자주 쓰는 유형. 고지대에 댐을 설치하고 도수터널을 통해 산 너머의 경사가 급한 저지대로 떨어트려 그 낙차로 터빈을 돌린다. 수로식과의 차이점은, 수로식은 발전을 하고 나가는 물이 취수되었던 강으로 다시 유입되지만 유역변경식은 이름답게 취수된 강과 다른 수계로 흘러나간다. 한국지리 시간에는 동고서저 지형을 이용한 강릉수력발전소가 주로 언급되며, 섬진강 유역에서는 일제강점기 때부터 써먹었다. 대한민국 최고령 수력발전소인 보성강수력발전소도 이 유형.댐수로식
댐과 수로를 합한 유형.양수식
다른 발전소와 유기적으로 작동하여 손실되는 전기를 줄이는 방식. 잉여 전력을 이용해 저지대에서 고지대의 저수지로 물을 올려, 전력이 필요할 때 물을 내려보낸다. 즉, 다른 발전소와 연동되지 않는 양수식 발전소는 무의미하다. 양수 발전은 주로 원자력 발전과 태양광, 풍력 발전과 연계된다. 남는 전력을 이용해 물을 올리고, 전력 수요가 가장 많은 시간대에 물을 내린다. 한국수력원자력에서 운용하는 수력 발전소 대부분이 양수발전소다. 양수발전은 블랙 아웃시 다른 발전소들이 다시 발전을 할 수 있도록 하는 자체기동발전 기능도 있다.
[발전량 조절]
수력 발전소는 다른 발전소에 비해 엄청난 전력제어 순발력을 자랑한다. (태양광이나 풍력과 같이 발전 시작을 제어할 수 없는 발전소 제외)
수소전지발전소: 최대출력까지 1시간
화력발전소: 최대출력까지 4시간
원자력발전소: 최대출력까지 1일. 단, pulse를 사용해 원자로 출력을 초고속으로 상승시킬 경우.
수력발전소: 10초~1분
수력발전소는 닫혀있는 워터밸브를 열자마자 순식간에 발전기를 가동시킬 수 있다. 또한 제어 속도가 매우 빠르고 민첩하기 때문에, 전력 부하의 변동이 잦을 경우 수력발전소를 우선으로 워멕에서 지시를 내려 부하 보상을 하게 된다. 참고로 450MW치 부하가 10분에 걸쳐 증가할 경우 화력발전소의 출력이 따라가지 못해 주파수가 떨어지는 것을 한전KPS 보고서를 통해 볼 수 있다. 여름에 에어컨이 켜지는 시각은 대부분 9시 부근. 이때 출근이니까.
[Cold Start]
Cold Start(정전 시동)란, 기기가 외부에 아무런 동력 없이 스스로 작동하여 상태를 점검하고 발전을 할 수 있는 상태가 되는 것을 의미한다. 이것을 위해선 특별한 메커니즘이나 fail over가 요구된다. 그리고 수력 발전소는 타 발전소와 달리 단순한 매커니즘으로 cold start가 가능하다. 이는 발전소 제어시스템 가동을 위해 비상동력원이 필요하지만 수력발전소는 그런 비상 전원이 필요없다는 말이다. 화력 발전소의 경우 연료 펌프를 가동해야 하고, 이그나이터도 켜져야 하고, 송풍기도 작동해야 하고, 워터펌프도 돌아가야 하고 해야 할 게 많다. 원자력 발전소의 경우 제어봉 들어올리는 데 전기 필요하지, RRS 작동시키는 데 전기 필요하지, MEMS,DCS 켜는데 전기 필요하지, 모두 전기를 요구한다. 조력발전소도 마찬가지로 수문 개방을 하는데 전기가 필요하다. 특히나 여기 수문은 수중에 있어서 손대기도 힘들다.
반대로 수력 발전소의 경우 만약에 비상발전기까지 망가져서 전기 공급이 없을 경우, 터빈실에 있는 밸브를 직접 손으로 개방하여 터빈을 돌릴 수 있고, 잔여자계에 의해 정상치보다 낮지만 발전 전압이 뜬다. 단, 수동개방에는 생각보다 오랜 시간이 걸린다. 약 4분 동안 계속 돌려야 1/10쯤 열릴까 말까. 그 순간부터 발전기의 AVR이 독자적으로 계자에 전원을 공급, 발전기가 정상 가동될 수 있다. 본래 상위 제어계통의 지시를 받아 작동되지만 Fail-Over 상황에서는 혼자 알아서 작동한다. 이후 시스템이 부팅되면 바로 시스템이 다음 발전기를 켜고 발전소가 가동되는 식으로 줄줄이 이어지게 된다.
혹시 만약에 대한민국에 문제가 생겨서 전기가 다 끊어진다면, 원자력 발전소보다 수력 발전소가 전력 복구에 유리하다. 한전은 이런 장점을 이용해서 전국을 7개 구역으로 나누어 수력발전소 2곳씩을 지정해 정전 시 전력망 복구(수력에서 나온 전력을 다른 발전소 시동에 사용. Black Start)에 동원한다. 물론 복구된 전력은 다른 발전소, 국가 기간시설(특히 방송국), 군부대부터 공급되므로 대정전 이후에 일반 가정에까지 전기가 들어오려면 최적의 조건에서도 5일 이상은 걸린다. 5일 이후 전기가 재공급돼도 그 뒤 최소 며칠간은 공급되는 전기의 품질이 극히 나빠서 전자제품은 거의 무조건 고장난다고 봐도된다. 선풍기나 전열기등 반도체와 별 인연이 없는 물건들 위주로 돌리자. 기본적으로 사회가 혼란스러워서 전력의 수요 공급 예측이 전혀 안 되는데다가 발전소 간에도 주파수 동기가 완전하지 않기 때문이다.
[환경문제]
수력 발전소 역시 완전한 친환경 발전방식을 사용하는 건 아니다. 자연을 인위적으로 바꾼거라 생태계 파괴 문제를 상당수 안고 있다. 수몰에 의한 것뿐만이 아니라 고습도 환경 조성으로 인해 기후가 변하는 것. 이를 방지하기 위해 만드는 것이 댐식의 수력발전소가 아닌 소수력발전(Small hydro)/초소수력발전(Micro hydro)으로, 고낙차 저수량을 모토로 하여 1MW(소수력)/1000KW(초소수력) 이하의 발전용량을 가진 발전기를 전기가 필요한 곳곳에 설치, 환경에 끼치는 영향을 줄이고 필요한 만큼의 전력을 얻는 효과가 있다.